Project Number: HGR-1000

A MICROPROCESSOR BASED AUDIO FILTER

A Major Qualifying Project Report
submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Michael J. Pender

Robert J. Ursillo

Date: December 14, 1990

Approved:

Professor Hemant G. Rotithor, Project Advisor

ABSTRACT

An audio filtering system that removes noise from old
recordings, can be used on old master recordings to create new
compact disc (CD) masters. A CD master would have little
distortion and would be more impervious to damage than other
recording mediums. One approach to creating such a comprehensive
filter is to allow for human interaction with a microprocessor
based filter, which utilizes a computer's logic and speed, and

human intelligence.

This project involves the design and implementation of a
microprocessor based system that can interface to a music
playback system. The project includes various software features
that allow a user to edit the music samples spaced ten
microseconds apart. With this type of system it is possible
to remove most of the imperfections present in a piece of music,
and then record the edited music onto a CD, where it can enjoy a

theoretically infinite life.

ii

TABLE OF CONTENTS

1.0 INTRODUCTION...::.:eeeeoooconaooss Ceeseeresec e eaaern

2.0 BACKGROUND. .e:eetotetesocotsssoosssososcocossscccccoccsss

2.1 DESCRIPTIONS OF NOISE IN RECORDINGS............

2.1.1 DEFECTS IN VINYL RECORDS...eceeveeoeenn

2.1.2 TAPE HISS. ...ttt eeeeoescossossocnanconan

2.2 CURRENT NOISE REDUCTION AND REMOVAL METHODS....

2.2.1 FREQUENCY FILTERING.ccteeteeeencons

2.2.2 DOLBY NOISE REDUCTION.cccveeeeceens

3.0 MICROPROCESSOR BASED FILTER APPROACH........cccceee.

3.1 MOTIVATION....ceeeosovaces O

3.1.1 HUMAN INTERACTION..::eceeocooeosoconsocss

3.1.2 NON-INTERACTIVE FILTERING......ccccc...

3.2 PROBLEMS.....ccceeeeerocsoccsessossocsososnsococccans

3.2.1 SAMPLING SPEED.......cceeeeeeeecocansena

3.2.2 MEMORY CONSUMPTION. .. .ceoeevvoeooonoess

3.3 DECISION..::eeeeortototoaoseassoscocnssssosonsosss

3.4 BLOCK DIAGRAM. ..ttt tveeosnsossnscosnsonssosncens

4.0 SYSTEM HARDWARE.ttt teeeeeersoceanosssansoncssa

4.1 JUSTIFICATION AND DESCRIPTION OF COMPONENTS....

4.2 DESIGN NOTES...¢eit et eeeeceoseoeoannsnnnaaancans

5.0 SYSTEM SOFTWARE. ... ceeetoeoeeeecooseoeoconnsanosoannsacs

5.1 SOFTWARE FUNCTIONAL DESCRIPTION.......ccecveu..

5.2 MICROPROCESSOR-FILTER DESCRIPTION......ceoueo..

5.3 PSEUDOCODE. .. ceeeettoreeereaseoncncsocoasosnnsoons

6.0 EXPERIMENTS..e:eeeeeecoeroosonaoeosnosccnsonsososnsoncess

6.1 FREQUENCY RESPONSE.....cccvtieeeeeenenccnaacans

6.1.1 SINUSOIDAL WAVE.t cteeeeoteneeonncons

6.1.2 TRIANGLE WAVE....... et eectansannans

6.1.3 SQUARE WAVE. ...ttt iieeeerneeoconnans

6.2 TESTS ON ACTUAL MUSIC WITH NOISE...........0..

6.2.1 VINYL RECORD DEFECTS........ccveeecennn

6.2.2 TAPE HISS. ...ttt eeoeseecsoenanosncons

7.0 CONCLUSIONS . .eeeeeeeeeeoeoseooosnocsssoscssnssasansonoess

7.1 COMPARISON TO THEORETICAL PREDICTIONS..........

7.2 DISCUSSION OF PROBLEMS ENCOUNTERED.............

7.3 SYSTEM LIMITATIONS.....ce.ieteeecssossoarsansonns

7.4 FUTURE DIRECTION.:ccervereeesesoocossoansosss
REFERENCES

APPENDIX A > MAKING PRINTED CIRCUIT BOARDS
APPENDIX B > SCHEMATIC LISTINGS
APPENDIX C > SOFTWARE LISTINGS

iii

CHAPTER 1 - INTRODUCTION

Unlike a vinyl record which has a needle bearing down on
its grooves and wearing away the medium, or a magnetic cassette
tape which has a magnetic sensing device pressing down on it
while the tape is moving causing irreparable bending and
stretching of the medium, the compact disc (CD) has the distinct
advantage of not being physically touched or altered when being
played back. The CD is read by a laser beam and a sensor which
detects 1's and 0's on the disc. The only objects that come in
contact with the CD are harmless photons. Because of this, the
life of a properly handled CD is theoretically infinite. Many
older recordings are now being placed on CD's to better preserve
the music on them, but two problems exist with this process.

The first problem is that some of the older masters no longer
exist, and the transfer of these recording to CD must be made
from worn vinyl records. The second problem is that the masters
were recorded on maghetic tape, a medium with inherent defects.

The types of analog filters available today cannot
remove, or even minimize many of the defects found in older
recordings. Also many of the defects are not consistent enough
for a machine of reasonable complexity to filter out. A
differentiating-integrating filter was made for comparison to
the microprocessor system. But the process of differentiating
magnifies high frequency noise, thereby introducing new audible
noise signals. A filtering approach using a microprocessor
system with human interaction is a possible approach to

-] -

overcoming this difficulty.

The objective of this project is to interface a personal
computer with an audio sampling and playback device. The
computer samples an audio signal (i.e., records the amplitude of
the output as a digital signal) at a frequency above the audible
range in order to avoid any loss of sound quality. The samples
are stored in the computer memory. A person can access the
memory, and edit any of the audio signal samples, or apply the
transfer function of any analog or digital filter to the data.
The sample editing functions result in an audio signal output
containing any alterations that the user desires, to a time
frame as small as 10 microseconds. Various software tools can
also aid the listener in the recovery and removal of unwanted
signals. The resulting edited music can then be output to
either audio components or a CD recording device.

The solution proposed and implemented in this project
can be summarized as follows:

- At the input there is a voltage matching filter which allows
for input from a CD player or any other audio signal generating
device.

- The amplitude of the analog signal is converted to a digital
signal by an analog to digital converter at a sampling rate of
100,000 samples per second.

- Each of these digital signals is stored in successive memory
locations.

- The memory containing this digital data can be accessed and

altered by the user.

- The data in the memory can then be converted back into an
analog signal by a digital to analog converter.

- The signal is then sent through an analog filter which removes
high frequency step noise created by the digital to analog
process. Step noise is the flat areas on the output curve that
occur between output samples.

- This filter can be connected to any audio device the user

chooses to either listen to or record the music.

CHAPTER 2 - BACKGROUND

Before deciding whether a microprocessor based audio
filter had practical applications, research had to be done on
the types of noise found in old recordings, and on the varieties

of filters that are available today.

2.1 DESCRIPTIONS OF NOISE IN RECORDINGS

Initial research had to be done to discover whether or
not a microprocessor based filter could remove the noise found
in old recordings. In order to determine this it was necessary
to look at the kinds of noise found on old recordings. There

are two major types.

2.1.1 DEFECTS IN VINYIL RECORDS

In the case of records the most noticeable defect is a
"pop". "Pops" occur is older worn records where pits in the
medium cause the needle to stick momentarily. Several
recordings of these "pops" were made and studied on a sample and
hold oscilloscope (an oscilloscope which can hold and repeat the
sample). The wave-form associated with these "pops" is a
rectangular wave with significantly high amplitude. The
duration (and thus frequency) of these rectangular waves varied
greatly, and many were within the same frequency range as the
music. A simple frequency based filter, which can only filter
out a particular frequency or range of frequencies (not
particular wave-forms) would therefore be useless.

- 4 -

2.1.2 TAPE HISS

Several blank magnetic cassette tapes (all of which
produced tape hiss) were observed with a sample and hold
oscilloscope. All of the tapes produced a similar waveform

which was noise at or around the 1,000 hertz range.

2.2 CURRENT NOISE REDUCTION AND REMOVAL METHODS

Before determining the usefulness of a microprocessor
based filter, it was necessary to determine whether or not the
analog audio filters currently available could do a satisfactory
job of removing the noise found on old recordings. There are

two major types of analog audio filtering available today.

2.2.1 FREQUENCY FILTERING

A simple method of noise reduction that allows for
listener control is that of frequency filtering through the use
of an equalizer. The listener can choose the gain level for
various frequency ranges by simply adjusting the controls of an
equalizer. This method, however, does not selectively filter
out unwanted wave-forms, and it cannot constantly adjust to its
input. Because of these problems, only limited editing can be

done with an equalizer.

2.2.2 DOLBY NOISE REDUCTION

Dolby noise reduction is designed for a specific
purpose: eliminating tape hiss from magnetic cassette tape.
Dolby noise reduction removes tape hiss upon playback of a

- 5 -

magnetic cassette tape by ignoring the 1,000 to 3,000 hertz
signal being output by the tape [1]. In this way no tape hiss
(which is in this frequency range) will be sent to the output.

When recording, the Dolby system shifts all of the music
at or above the 1,000 hertz frequency up about 2,000 hertz.

Upon playback it ignores all signals in the 1,000 to 3,000 hertz
range that are output by the tape, and shifts all the signals
from 3,000 hertz or above down by 2,000 hertz and sends it to
the output.

This system is effective for removing tape hiss, but
this is only a very limited application. Even with regard to
this single application, however, there is the drawback that
when signals are shifted up 2,000 hertz, the higher frequencies
of the music are sometimes clipped by the limited dynamic

frequency range of the tape it is being recorded on.

CHAPTER 3 - MICROPROCESSOR BASED FILTER APPROACH

Because of the specialized and limited applications of
the current types of noise reduction filters, there'is a need
for a more comprehensive and flexible type of filtering, one
that can filter out any noise that is unpleasant to the human
ear regardless of its frequency or wave-form. A possible way to
filter out everything that sounds bad to a person, is to allow a
person to be an interactive part of the filtering system. A

microprocessor based design allows for this type of interaction.

3.1 MOTIVATION
The various advantages of the microprocessor based
filter, which provided the motivation for designing and

implementing it, are described in this section.

3.1.1 HUMAN INTERACTION

A microprocessor based filter has the distinct advantage
of being able to post-process a signal after sampling. That is,
by saving a portion of the audio signal as it is being played, a
person wishing to edit an improper piece of music can pause the
audio signal and search through the memory (with the help of
various software routines) to find the section of music to be
edited. An analog filter can merely influence the signal
according to the transfer function of the circuit. The post-
processing feature allows for human interaction to alter the
audio signal to suit the human ear, rather than simply configure

-7 -

it to a the specifications of a set of unemotional transfer
functions. This is important because in the end the human ear

is going to listen to the signal.

3.1.2 NON-INTERACTIVE FILTERING

If human interaction is not desired or is too
cumbersome, the microprocessor based filter still has the
advantage of being able to run any signal processing routine
that one may wish to implement, such as the Fourier transform

analysis and editing that is described in chapter 5.

3.2 PROBLEMS
The microprocessor based filter is not totally without
flaws. The problems associated with this kind of filter are

described in this section.

3.2.1 SAMPLING SPEED

The most significant problem inherent in a
microprocessor based filter is that of sampling speed. Sampling
speed is the rate at which the system can record the amplitude
of an analog signal in terms of digital samples per second. An
analog filter has a continuous signal as an input, and a
continuous signal as an output. A sampling filter can only
sample an input signal at a fixed maximum sampling rate.
Restrictions on this speed are imposed by the conversion time
(i.e., the time it takes for an analog signal to be converted
into a digital signal) of the analog to digital converter (ADC),

- 8 -

the setting time (i.e., the time it takes for the analog output
to settle at the proper voltage) of the digital to analog
converter (DAC), and the processing speed of the computer.
However, the present day speeds of computers and the ADC and DAC
chips are such that regeneration of the signal is so accurate
that the human ear cannot distinguish between a continuous

signal and the sampled and filtered output.

3.2.2 MEMORY CAPACITY

A second problem, which is more of a logistical nature
than a technical one, is that of memory size. At 100,000
samples per second and an eight bit sample size (representing
the amplitude of the sample) one megabyte of memory will be
occupied by a twenty second music sample. If an average song is
assumed to be four minutes, a 12 megabyte space of memory must
be allocated per song. This problem is overcome by either
allotting the 12 megabytes of memory, or by playing the music
through at the same time it is being stored in a memory window.
In this way, the user stops the music and the storage routine
when noise is encountered. The noise that the user wishes to
remove will be stored in memory with music on either side of it.
While in this paused mode, the user can edit the noise stored in
memory before restarting the system and sending that piece of
the music to the recording device. The problem with this method
is that it is very difficult to synchronize the device creating
the original audio signal with the computer and the device
recording the output audio signal when pausing the music to do

- 9 -

editing. All of the devices (playback device, sampler, and
recorder) must come to a complete stop at exactly the same time

to avoid introducing any unwanted signals into the system.

3.3 DECISION

Based on the previous discussion, it was decided that
the sampling speed of the system was sufficient, and that a
twenty second music sample would be enough for testing purposes
(it is assumed that more memory could have been bought, but for
test purposes and limited funds this would suffice). The
aforementioned benefits of the microprocessor based system
greatly outweighed any drawbacks associated with it, therefore
the decision to implement this type of filtering system was

made.

3.4 BLOCK DIAGRAM
Each of the following descriptions corresponds to one of

the blocks in the block diagram shown in figure 1.

INPUT SIGNAL:
The input signal can be generated by any audio playback
device. The signal is then sent to an input voltage matching

filter.

INPUT VOLTAGE MATCHING FILTER:
The input voltage matching filter has two functions.
The first is to rescale voltages being output by an audio output

- 10 -

wa3sAg 493114 40559204d0J0 Tl 40 weuabe1q 32019

1] aJ4nbry4

1es
HMEE
MYOS
ieueauo) 16UBAUO))
reubis he_m_. Boreuy reuiq | [1eui] [feubis
inding [{indino | o1 reudiq [{ Aioweyy [o1 Boreuy [Jandui] induy

device, such as a phonograph or a CD player, to a range of +/- 5
volts that can be used by the analog to digital converter. The
second is to remove the problem of aliasing by using a two pole
low pass analog filter with a roll off at 20,000 hertz [2].
Aliasing occurs when the frequency of a signal is greater than
half the sampling rate. The sampling device views all of the
high frequency peaks as a continuous signal, and upon
regeneration of the signal, would output several of these high
frequency peaks as a single low frequency pulse. Though sounds
at or above 20,000 hertz are not noticeable to the human ear in
their original state, an aliasing problem would occur and create
an audible low frequency signal if the high frequency signals

were not filtered out.

ANALOG TO DIGITAL CONVERTER: (ADC)

The ADC is a single chip that is clocked at a rate of
100,000 times per second. When clocked, it tracks, holds, and
converts the voltage at its input, into an eight bit digital

signal. The digital signal is then sent to the computer.

COMPUTER INTERFACE:
The computer stores the digital signals that constitute
a song in sequential order in the RAM (random access memory)

space allocated. The next stage is optional.

SOFTWARE INTERFACE AND EDITING:
The user can select various regions of memory for either

- 11 -

display or playback, zeroing in on the location containing the
sound to be edited. Once located, the user can either implement
a software editing feature, or can manually alter any of the
bytes desired. This editing feature allows for alternating
between loop playback and editing until the desired sound

quality is attained.

DIGITAL TO ANALOG CONVERTER: (DAC)

The DAC is a single chip that is connected to the
computer's data bus through latches. At a rate of 100,000
samples per second (to match the rate at which the data was
sampled) the computer puts an eight bit digital signal on the
data bus and then the latches. When the latches are clocked,
the digital data is sent to the DAC chip which changes the
digital data into a voltage that is subsequently sent to an

output voltage matching filter.

OUTPUT VOLTAGE MATCHING FILTER: (OVMF)

The output voltage matching filter serves two purposes.
The first is to eliminate as much of the step noise generated by
the digital to analog conversion as possible. Though the step
noise may not be perceptible to human ears, the high frequency
and possibly high magnitude (if amplified to a great extend) may
prove harmful to audio equipment such as amplifiers and
speakers. Therefore the OVMF is a necessary stage. This filter
is a two pole low pass analog filter with roll off at 20,000
hertz [3]. After this stage, the signal output can be handled

12

by normal audio components such as an amplifier. The second
purpose of the filter is to rescale the output voltage to +/- 2
volts RMS so that it may be used by normal audio devices such as

amplifiers.

- 13 -

CHAPTER 4 - SYSTEM HARDWARE

This chapter gives an overview of the components used in

the design and explains why they were chosen.

4.1 JUSTIFICATION AND DESCRIPTION OF COMPONENTS
1S574 LATCH CHIP

The LS574 latch chip is a high speed CMOS, eight bit,
level sensitive latch device. This chip was chosen because the
system uses an eight bit bus. It was necessary to use a latch
that is level sensitive, as opposed to edge triggered, because
the data lines are not set prior to the latched being clocked,
but at the same time the latch is clocked. Another factor which
was considered when choosing this chip was the pin layout, which
places all of the input pins on one side of the chip. This pin
configuration allowed for a more manageable wiring layout than

any of the other chips considered.

LS374 LATCH CHIP

The LS374 latch chip is a low cost, eight bit, level
sensitive, latch device with tri-state outputs. This chip is
only used to latch a single bit, but it was necessary to use a
chip with tri-state output (so it would not try to place data on
the bus when the chip is not active). This chip was chosen for

its tri-state output and low cost.

MICRO NETWORKS DAC80 DIGITAL TO ANALOG CONVERTER

- 14 -

The DAC80 is a low cost, twelve bit, digital to analog
converter. The chip had a low enough logic current draw on the
bus lines (from -180 to 20 microamps) to be driven by CMOS logic
latch chips. The chip also had a sampling rate well within the
specifications needed for audio reproduction (ie., 20,000 hertz)
at 100,000 samples/second. The chip's +/- 5 volt output range
also met the voltage requirements necessary for audio input,
which is +/- 2 volts RMS. This chip also has the advantage of
being a twelve bit high precision device which would facilitate
a twelve bit oversampling function if the project were further
developed. The only feature that the DAC80 did not possess,
that would have made the design simpler, was the presence of

built in latches, a feature on some higher priced models.

MICRO NETWORKS MN6231 ANALOG TO DIGITAL CONVERTER

The MN6231 is a low cost, twelve bit analog to digital
converter. This chip configured to the 100,000 samples/second
that was specified for this project. The MN6231 also worked
within the +/- 2 volt RMS necessary for audio signals with a
range of +/- 5 volts. This chip also had the advantage of being
a twelve bit high precision device which would facilitate a
twelve bit over sampling feature if the project was further

developed.

4.2 DESIGN NOTES
For the construction of the circuits required in this
MQP many approaches were considered. Breadboarding is well

- 15 =

suited for circuit testing, but is inappropriate for a permanent
circuit. The first attempt made was to take a board
specifically designed for interfacing to an Apple computer and
to mount the chips on it. Small boards would be used to mount
groups of chips, and wire would be used to make the connections
between boards. Before the circuit was half wired, however,
there was a rat's nest of connections. Debugging such a circuit
would be impractical. The next option considered was wire
wrapping the circuits on a board. Wire wrapping, however, would
have made an equally unmanageable rat's nest, and this technique
is more suited to temporary designs. As an MQP, a project is
expected to be held intact for possible use in the future.
Further, the specifications for the A/D and D/A chips
specifically recommend against wire wrapping to obtain the
specified accuracy. Wire wrapped boards tend to pick up stray
signals easily, especially when a circuit contains both digital
and analog sections. The best option available was to have a
custom printed circuit board generated for the circuit. To send
a design out for such service would have cost hundreds of
dollars for even a simple design. Because of this, using the
facility at WPI for creating such boards was a viable option.
The facility is located in the rear of the EE shop. With the
help of Paul Nader, the process of how to manufacture the boards
was soon learned. The complete process is described in detail

in Appendix A.

- 16 -

CHAPTER 5 - SYSTEM SOFTWARE DESIGN

Various filtering functions of this system are
implemented in software. This chapter includes a description of
the interface between the software and hardware, the storage and
retrieval algorithms used, a functional description of the

software modules, and a software description using pseudocode.

5.1 FUNCTIONAL DESCRIPTION

Most of the source code for the software is contained in
the file /mgp.c. This code is written in the HyperC Prodos
language, but should be portable to other C environments with
little effort. The first section of the file includes standard
headers for file input and output, global variables which
contain information about the data image on the desktop, and
hardware addresses for accessing the specific configuration of
the computer being used.

The first module is main, which accesses most functions
of the filter system. All functions written in C, or 6502
assembly are called from main, or one of its subroutines.
Analysis mode is not called from main, as the analysis functions
are not written in HyperC Prodos, but in Applesoft BASIC.
Control must be manually passed from the C system to the BASIC
system. Therefore, the Analysis functions are run independently
of main and its support functions. This triple language
implementation makes the best use of the computer's various
resources. Assembly is best suited to doing high speed device

- 17 -

level operations, such as interfacing the memory card and the
microprocessor filter. C interfaces easily to assembly, and
provides a modular system in which to develop a large software
project. Applesoft provides simple access to graphics routines,
and makes use of floating point functions convenient.

Additional benefits are derived by not requiring all of
code to occupy memory at the same time. The C program uses most
of the 64 Kilobytes of available program memory for code space.
The assembly routines use all of the one megabyte of expansion
memory. The BASIC FFT routines require large arrays. The
arrays use the 64 Kilobytes program space. The FFT routines
also require extensive disk access, which is done from the 64

Kilobyte, slot three ramdisk.

5.1.1 MAIN

The bulk of the software code is written in Hyper C
Prodos. The software is mostly menu-driven, beginning in the
module main. Main presents the user with a menu of all major

sub-functions, and executes the one selected.

5.1.2 INSTRUCTIONS

The purpose of this routine is to provide the user with
some general information about the microprocessor-filter systen.
This is done by opening and reading from a text file called

/mgp/mgp.helpfile, and printing the information to the screen.

5.1.3 SAMPLE

- 18 -

The sample routine is also called by main. This routine
issues a message to the user that a key must be pressed to begin

sampling, then passes control to fastsample.

5.1.4 FASTSAMPLE

Fastsample is an assembly language routine. Its function
is to read successive values from the A/D port, and store them
in memory as fast as it can, until all available expansion
memory is full. A small code segment at the beginning of this
routine causes it to wait before starting, ensuring that the

user is ready to begin.

5.1.5 PLAYBACK

Playback gets the starting address, ending address, and
speed information required to recreate a segment of the data
stored on the desktop. Then it passes control to play8. The
starting and ending addresses define the segment of data to be
played, and the speed is a period multiplier between successive
outputs. This means that a speed of 'l' indicates playing back
at the speed at which the data was sampled. A speed of '2'
means to use twice the delay between samples, playing back at
half the speed at which the original was sampled. The maximum
delay between samples is selected by choosing speed = '0', which

pauses for a delay 256 times the delay between original samples.

5.1.6 PLAYS8
Play8 copies data from memory to the D/A chip. The

- 19 -

starting address, ending address, and speed are set in playback
before play8 is called. The routine repeats the segment until a
key is pressed, when the loop is terminated. Play8 is timed to
reproduce data at the same rate as fastsample. This means that
a speed value of 'l' will cause playback to reproduce data at
the same rate at which it was recorded. A speed value of '2'
generates output at half the original speed it was recorded,

etc.

5.1.7 DISPLAY

The display routine allows the user to view large
segments of eight bit sampled data in hexadecimal form. A
starting point in memory is selected by the user, the data is
then displayed one page at a time. Successive pages of 384 bytes

display sequential segments of the megabyte expansion memory.

5.1.8 ANALYSIS

The analysis function first informs the user of the steps
necessary to transfer control to the external analysis routines.
Next an option is presented to return to the main menu. If the
user selects to continue with the procedure, the user is
prompted for a starting address. This address is then loaded
into the card, for use by the analysis routines. This address

is used as a starting point by fft, and plot.

5.1.9 EDITOR
The editor function prompts the user for a starting

- 20 -

address, then displays the contents of sixteen bytes in that
area of memory. Data may then be altered byte by byte, allowing
manual editing of sampled data. This is the feature that
separates the microprocessor based filter from a standard analog
filter. The user may individually alter the sampled data. With
the system operating at full speed, one second of signal is
stored in 40K of memory. An error, such as a pop noise, may be
removed by replacing the error data with bytes which represent
the desired performance. The desired performance is chosen by
the user by manually editing the bytes in memory until the noise

can no longer be heard.

5.1.10 SYSTEM

The system function allows the user to load or save audio
image data from any prodos compatible disk device. Data is
stored in an uncompressed format, allowing reproduction with no
loss of the sampled data. The file format consists of the speed
at which the data was recorded, and a sequential listing of the
actual performance data in an eight bit format. When saving
data from the desktop to a disk, the user may select the
starting and end points of the data segment. When loading data
from disk to the desktop, the information is copied into the

expansion memory at the beginning of ram space by default.

5.1.11 TEST
To ensure proper function of the system it is helpful to
have standard wave-forms available for testing purposes. The

- 21 -

test routine offers the user the option to load a triangular,
square, or sinusoidal waveform into the card. The ability to
generate predetermined wave-forms also allows a user to check
for correct output from whatever external devices may be
connected, without interrupting the system. This feature is

helpful for isolating faults or signal loss in the output stage.

5.1.12 STARTUP

When the BASIC.SYSTEM environment is entered, the
computer looks for and attempts to execute a file named STARTUP.
By choosing this name for the file it is run automatically.
Startup offers the user a menu of the different analysis
functions written in BASIC. At the user's selection the
computer will execute the fft, plot or filter function, or

return to the main menu in the C.SYSTEM.

5.1.13 FFT

A Fast Fourier Transform (FFT) is a mathematical process
that decomposes a set of sampled data into harmonic frequencies.
An FFT is a reversible process, the harmonic frequencies may be
recombined to recreate the data of the original sample. When
fft is called from the startup menu the user may select to
execute an FFT of 32 to 1024 points on the data segment chosen
in the analysis routine of mgp.c. The FFT routine used was
created by Oppenheim and Schaffer [4]. After the FFT data is

computed it is written to the file /RAM/FFT.DAT.

5.1.14 PLOT

The plot routine offers the user the option to plot
several different types of information to the high resolution
(hi-res) screen. Options for plotting include viewing various
ranges of the data in memory, FFT data, or a reconstruction of
the original data from recombining the FFT data, as described in
5.1.13. If the user selects a plot of original data, the hi-res
screen is scaled automatically to use the full width of the
video monitor. FFT data is read from the file /RAM/FFT.DAT and
plotted at one eighth of the height of the screen by magnitude,
phase, and magnitude with phase. A second option allows viewing
magnitude with phase data, which allows viewing at half of the
height of the screen. To reconstruct the sampled data from the
FFT, data is read from disk, then an Inverse Fast Fourier

Transform is performed on the data [5].

5.1.15 FILTER

Before calling the filter function the user must execute
the fft routine to convert a segment of the sampled data to
frequency components. The fizlter function allows the user to
eliminate all frequency components of the sampled data below a
certain magnitude. The "pop"” type noises were found to appear
as a rectangle wave, which fft decomposes into a primary
harmonic and associated harmonics of lesser magnitude. The
frequency components of tape hiss appear to be an infinite
number of low magnitude frequency components. An approach to
filtering that responds differently to true frequencies than

- 23 -

noise can effectively increase the signal to noise ratio.
Therefore, a copy of a recording may be made that sounds more
pleasing to the user than the original. This filter is non-
linear in its frequency response, as frequency components of a
magnitude above the threshold level will be unaffected, while
components below the threshold level will be reduced to zero

magnitude.

5.2 THE MICROPROCESSOR FILTER INTERFACE

Software interface with the microprocessor filter board
is made through functions written in assembly language, and
linked to the software written in the C language. Assembly
read/write calls are used to directly access the analog to
digital (A/D) and digital to analog (D/A) converter chips on the
microprocessor filter board. A segment of eight addresses in
the range $COF0 - $COF7 are used to control both the A/D and D/A
chips. The Apple computer used has an eight bit data bus. To
read or write twelve bit data provided by the A/D and D/A used
requires two separate read/write cycles to access all data bits.

A Micronetworks MN6231 chip is used as the analog to
digital converter. To acquire a sample the computer makes a
write access to address S$SCOF3. This access strobes the MN6231
to take a sample. The MN6231 requires ten to fifteen
microseconds to complete its determination of the digital value
of a sample. The computer used is capable of storing values in
memory at more than twice the rate at which the converter can
produce them. The MN6231 provides a STATUS line which remains

- 24 -

high until the sampled data is ready. This line is available
for a read access to software as bit seven of the address $COFO.
The STATUS line is polled, and delay cycles are executed as long
as the line is high. After the STATUS line drops low, the data
is read from address $COF2. The data is then written to the
expansion memory card. For sequential read or write access the
card automatically increments the memory location pointer. This
feature helpéd to simplify the software, making it unnecessary
to maintain pointers to the current memory location. Reducing
the number of instructions necessary helped increase execution
speed of sampling, playback and disk storage routines, since
less instructions needed to be executed to access each specific
byte of data on the expansion card.

A Micronetworks DAC80 chip was used as the digital to
analog converter. The DAC80 was indirectly controlled through
two eight bit latch chips at addresses $COF4 and $COF6.

Acoustic data is read from the memory expansion card and written
to the latches. Once again the auto increment feature of the
memory card allows simplifications in the software. The DAC80
chip has a two microsecond response time for full scale
deflection from -5 V to +5 V, so a software delay was introduced
to generate playback at the same speed as data was sampled. An
optional delay loop was also added to the software to allow
altering the playback speed. Additionally, playback may also be
repeated as often as desired. This feature makes it simple to
observe part of a sample on an oscilloscope, or to search for
the occurrence of a pop or other noise.

- 25 -

5.3 SOFTWARE PSEUDOCODE
The pseudocode for each major function is presented in
this section. Pseudocode descriptions of functions are grouped

with other functions written in the same language.

5.3.1 HYPER C PRODOS (/MQP/MQP.C)
These routines handle most of the functions of the
Microprocessor filter. All routines including those written in

Assembly and Applesoft BASIC return to main().

main()

{
char done, key;
Set80ColumnText () ;

ClearTheScreen() ;
IssueWarningAboutRamdisk() ;
if (AskShouldContinue() == No)
{

}
done = no;
while (not done)

{

Exit () ;

ClearTheScreen() ;
IssueWarningAboutLockup () ;

/* Microprocessor system may lock up if printed circuit
board is not connected to the computer's bus */

key = Menu()

{

View instructions;
Sample mode;
Playback mode;
Display mode;
Analysis;

Editor mode;
Operating system functions;
Load test data:;
Exit program;

QOO WDNDR

}
switch (key)
{
case '1l':
26

instructions();
break;

case '2':
sample();
break;

case '3':
playback();
break:;

case '4':
display();
break;

case '5':
analysis();
break:;

case '6':
editor();
break;

case '7':
system();
break;

case '8':
test():
break;

case '0':
ClearTheScreen() ;
done = yes;

)

instructions()
{

char filename[20];
char c, p, count;
FILE fp;

filename = FileOfInformationAboutSystem;

/* The actual filename is system-implementation dependent */

cnt = 0;
fp = open (filename) ;
ClearTheScreen;
while ((c = GetCharFromFile(fp)) != ErrorReadingData)
{
if (c == CarriageReturn AND ++count == HeightOfScreen)

{
p = GetKeyPressed():

if (p == Quit)

{
PrintCarriageReturn() ;
Return;

}

cnt = 0

27

}

if (IsPrintable(c))
PrintCharacter(c) ;

}
close(fp):
WaitForReturnKeypress;

sample()

{

)

char key:;

ClearTheScreen() ;

PrintMessage("Executing 8 bit sample mode") ;
PrintMessage("Press any key to begin..."):
fastsample();

playback()

{

}

char key, first, second;
ClearTheScreen() ;
PrintFunctionDescription() ;

/* Issue instruction on how to use this function */

GetStartAddress() ;
GetFinishAddress () ;
PrintByte (SPEED) ;
if((first = GetHexValue()) != ReturnPressed)
if ((second = GetHexValue()) == ReturnPressed)
SPEED = first;
else
SPEED = second + 16 * first;
ClearTheScreen() ;
PrintMessage ("Executing Eight bit playback mode") :;

play8();

display()

{
char done, key, temp;
char i, 3

ClearTheScreen() ;
PrintFunctionDescription() ;

/* Issue instruction on how to use this function */

GetStartAddress() ;
InitializeRamCard() ;
done = false;
while(not done)
{

for(i = 0; 1 < 20; i++)

{

PrintAddress (RamCard) ;
28

for(j = 0; j < 16; j++)
PrintByte (DataOnCard) ;
PrintCarriageReturn();
}
key = AskShouldContinue():
if (key == No) done = true;
PrintCarriageReturn() ;

)
analysts()
{

ClearTheScreen() ;
PrintFunctionDescription();

/* Issue instruction on how to use this function */
AdviseHowToUseSubfunctions () ;

/* Issue instruction on how to pass control to the
subfunctions */

if (AskShouldContinue() == No) Return;
PrintCarriageReturn() ;
GetStartAddress() ;
PassControlToBASIC() ;
Exit();

}

editor()
{
char done, key, temp, first, second;
char i, j;
ClearTheScreen() ;
PrintMessage ("Editor mode") ;
GetStartAddress()
done = false;
while (not done)
{
InitializeRamCard() ;
SetAddress (START Bitwise_Anded_With Oxffffo0);
PrintAddress (RamCard) ;
for(i = 0; 1 < 16; i++)
PrintByte(DataOnCard) ;
SetAddress (START) ;
PrintAddress (START)
PrintByte(DataOnCard) ;
if((first = GetHexValue()) == ReturnPressed)
Return;
if((second = GetHexValue()) == ReturnPressed)
temp = first:
else
temp = second + 16 * first;
SetAddress (START) ;
29

DataOnCard = temp;

if(not (IncrementCardAddress) = OutOfMemory)
done = true;
}

)
system()
{

char key;
ClearTheScreen() ;
key = Menu()

{

1 Save desktop data to file;
2. Load desktop data from file;
0. Exit to previous menu;

}
switch (key)
{
case '1' :
GetStartAddress() ;
GetFinishAddress():;
GetFilename() ;
WriteFileToDisk() ;
break;
case '2!
GetFilename () ;
ReadFileFromDisk() ;
break:;

)

test()

{
char key:;

static char sinusoid[32]
static char square([32]
static char triangle[32]
char *image;

char i, j;
ClearTheScreen() ;

key = Menu()

{

ImageOfSinWave;
ImageOfSquareWave;
ImageOfTriangleWave;

1. Sinusoid data:;

2. Square wave data;

3. Triangle wave data:;

0. Exit to previous menu;

}

PrintMessage ("Loading data image...");
switch (key)
{
case 'l':
image = sinusoid;
break:;

- 30 -

case '2':
image = square;
break;

case '3':
image = triangle;
break;

case '0':
Return;

}
PrintMessage("Loading 1024 data points into desktop...");

InitializeRamCard() ;
for(i = 0; 1 < 32; i++)
for(j = 0; j < 32; j++)
DataOnCard = DataPointedToBy(image + j);
START = 0;
FINISH = 1023;
WaitForReturnKeypress() ;

)

5.3.2 6502 ASSEMBLY ILANGUAGE (/MQP/MQP1.A)

These routines isolate the functions written in C from
the details of interfacing directly to the filter system
hardware. The routines have code included to allow them to work
with the C system, as if they were C functions. After
performing their task they return control to the calling

function.

fastsample()

This routine directs the hardware card attached to
perform an eight bit conversion. This routine instructs the
MN6231 chip used to get a sample, then waits until the data is
ready. Next the routine reads the data, and stores it on the
memory expansion card at the current address. Even on its
slowest loop the routine can store more than 100,000 samples per
second. The converter chip used can only process up to 100,000

samples per second. This means the routine is faster than

- 31 -

necessary. The routine is written using a wait loop that checks
the status of the MN6231, and waits until the chip has completed
acquiring a new sample. The routine loops until all expansion
memory has been used, then returns control to the calling

function.

play8()

This routine interprets the data on the memory card as
eight bit audio data, and passes it to the DAC80 chip.
References are made to global variables SPEED, START, and
FINISH. SPEED controls the delay between successive writes of
data to the DAC80 port. A SPEED value of one recreates output
at the same rate at which the input signal was sampled. A SPEED
value of two would recreate output at half the rate, etc. START
and FINISH determine the first and last byte of data to be

played.

5.3.3 APPLESOFT BASIC

These routines perform the various frequency analysis
functions. These routines were written in BASIC because HypercC
has poor floating point facilities, and no hi resolution

graphics capability.

startup()
{
char key, done;
done = no;
while (not done)
{
ClearTheScreen() ;
key = Menu()
32

1. FFT analysis of data
2. Plot utility

3. Filter utility

0. Return to main program

}
switch (key)
{
case '1':
fft():
break;
case '2':
plot():
break;
case '3':
filter():
break;
case '0':
done = yes;
}
}
ExitToMain():
}

{ft()
char done, key:;

GetRamPointer() ;
ClearTheScreen() ;
done = no;
while(not done)
{
key = Menu()
{
1. 1024 point FFT
2. 512 point FFT
3. 256 point FFT
4, 128 point FFT
5. 64 point FFT
6. 32 point FFT

0. Exit
}
switch (key)
{
case '1l':
NumberPoints = 1024;
break;
case '2':
NumberPoints = 512;
break;
case '3':
NumberPoints = 256;
break;

- 33 -

case '4':
NumberPoints
break;

case '5':
NumberPoints
break:;

case '6':
NumberPoints = 32;
break;

case '0':
RestoreRamPointer () ;
ExitToStartup():

128;

64;

}
LoadArray (NumberPoints) ;

PerformFFT (NumberPoints) ;
WriteFFTData (NumberPoints) ;

}

?lot()

char done, key:

ProtectGraphicsPages() ;
GetRamPointer () ;
done = no:;
while(not done)
{
ClearTheScreen() ;
key = Menu()
{
1. 1024 points
2. 512 points
3. 256 points
4. 128 points
5. 64 points
6. 32 points
7. Plot FFT data
8. Only Mag. with phase
9. View reconstruction
0. Exit

)
switch (key)
{
case '1':
NumberPoints = 1024;
PlotData (NumberPoints) ;
Gridlines()
break;
case '2':
NumberPoints = 512;
PlotData (NumberPoints) ;
Gridlines();
break;
—34_

case '3':
NumberPoints = 256;
PlotData (NumberPoints) ;
Gridlines();
break;

case '4':
NumberPoints = 128;
PlotData (NumberPoints) ;
Gridlines():
break:;

case '5':
NumberPoints = 64;
PlotData (NumberPoints) ;
Gridlines():
break:;

case '6':
Numberpoints = 32;
PlotData (NumberPoints) ;
Gridlines();
break;

case '7':
LoadFFTData() ;
PlotFFTData() ;
break;

case '8':
LoadFFTData() ;
PlotMagWithPhase() ;
break;

case '9':
LoadFFTData() ;
InverseFFT() ;
PlotData(FFTData) ;
ShouldReplaceDataOnCard() ;
break;

case '0':
done = yes;

)
}
ExitToStartup():;
}

filter()
{

int i;
char threshhold;
ClearTheScreen() ;
PrintMessage ("Threshold level? (0-255) ");
threshhold = gethex():
if (threshhold = NoChange) ExitToStartup():
LoadFFTData () ;
for (i = 1; i <= NumberPoints; i++)
if (threshhold > Magnitude(FFTData(1i)))
FFTData (i) = ZeroMagnitude;
WriteFFTData (NumberPoints) ;
- 35 =

ExitToStartup():

36

CHAPTER 6 - EXPERIMENTS

Experiments were run on the microprocessor based system
to determine how well it performed under various conditions.
Both synthesized wave-forms and actual music were used in the

experiments.

6.1 FREQUENCY RESPONSE

The following three frequency response plots indicate how
the output of the system reacted to input. The type of input is
stated at the top of each graph. In each case, the wave-form
was fed into the system, stored in memory, and sent to the

output without modification.

6.1.1 SINUSOIDAL WAVE

The system shows a flat frequency response to a
sinusoidal wave, up to 5,000 hertz. Between 5,000 and 10,000
hertz the amplitude gain begins to drop. The multiple pole
nature of the input and output voltage matching filters results
in a flat area between 10,000 and 15,000 hertz. Beyond 15,000
hertz, the frequencies are sharply attenuated as shown in figure

2.

6.1.2 TRIANGLE WAVE

The frequency response to a triangle wave is similar to
that of a sinusoidal wave up to 10,000 hertz. However, the
filter responds inconsistently to the higher harmonic sinusoids

- 37 -

which compose the triangle wave as shown in figure 3.

6.1.3 SQUARE WAVE

The response to a square wave is flat up to 10,000 hertz
as expected. However, above 10,000 hertz overshoot results in
the system digitizing the ringing of the input square wave.
Ringing refers to the pattern of high frequency oscillation
created at the beginning and end of a square wave when

impedances are not perfectly matched as shown in figure 4.

6.2 TESTS ON ACTUAL MUSIC WITH NOISE

At this point the system was ready to be used for its
intended purpose, removing noise from music. The two varieties
of noise described in the beginning of the report were to be

removed from the recording.

6.2.1 VINYL RECORD DEFECTS

The test sample was the same recording of "pops" used
with the sample and hold oscilloscope. The tape was allowed to
play until a "pop" was heard. The tape player and memory
storage routine were both stopped. By changing the start and
end memory locations for playback, the memory location in which
the "pop" was stored was narrowed down. Using an oscilloscope,
the memory area in which the "pop" was located was found. By
using the software along with manual editing, the pop was
reduced in the music until it could no longer be heard, or seen
on the oscilloscope.

- 38 -

000001

wa0jdAeM Indul [eprosnuis e 03 walsSAS
483114 40SS8204dOUD T JO BSuodsad Aouanbaua4 :2 aunbi4

(ZH) AONANOTYA
00001 0001
Y N..—l
— .Hl
— w.Ol
- 90—
— .v.O'
— N.O'
0
20
AAVM TVAIOSNNIS V OL

3SNOdS3H AONIND3IHS

000001

andul aaem oibueidl e 03 wWeSAS
J93 114 J40SS8204dOUDT JO BSuodsau Aousnbau{ :g aunbi4

(zH) AONANOAYA
00001

HJAVM H'TONVIIL V OL

dSNOdS3H ADN3ND3YHA

(gp) NIVD

000001

andut aAeM dJ4enbs e 01 wd3SAS
491114 40S59204d0UDT| JO dsuodsad Aduanbad{ iy a4anbi4

(zH) AONANDAAA
00001 0001
1 M.OI.
0
4 $0
d1
= B
42
ST
AV FIVNOS V OL

dSNOdS3H ADNIND3IH

(gp) NIVD

6.2.2 TAPE HISS

Using the same tape that was used with the previous
experiment, tape hiss was removed from the recording. For this
test the Fourier transform analysis and editing was used. A
sample of music was read into memory, and the tape player and
memory storage routine were both stopped. A Fourier
transformation was done on one kilobyte of memory. The
transform information was then fed through a "kill filter".
This filter removed all frequency harmonics below the manually
chosen threshold amplitude. The threshold level selected in
this case was the quantization error associated with the least
significant bit of an eight bit sample: 39 millivolts. It was
necessary to choose a very small amount of memory because of the
processing time that a Fourier transform demands and the
relatively slow processing speed of the computer being used (a
6502 with 4 Megahertz). Because of this, the sample selected
for the transform (which represented one fortieth of one second)
was impossible to hear. However, examination of the signal on
an oscilloscope (using the repeat playback mode of the software)
showed that there was a significant reduction in the amplitude
of the noise present before filtering.

The first tape hiss test was run with no music in the
background, just tape hiss. Initially the amplitude of the
noise was 3.5 volts peak to peak. After the filtering, this
noise was reduced to 1.6 volts peak to peak. This is a drop in
noise of 6.8 dB. The second tape hiss test run was with music.
No noticeable change occurred in the music signal (as displayed

- 39 -

on an oscilloscope). This type of filtering resulted in a
decrease in the amplitude of the noise, with no appreciable
decrease in the amplitude of the music. This type of filtering,
therefore, actually increases the signal to noise ratio, the

true measuring stick for an audio filter.

- 40 -

CHAPTER 7 - CONCLUSIONS

This is a brief discussion of the success of the project
versus the theoretical predictions, the problems encountered
during the project, and suggestions for future directions for

the project.

7.1 ACHIEVING PROJECT GOALS

Oone goal that was set for the microprocessor based audio
filtering system was to remove various kinds of noise from old
recordings, by allowing for human interaction. The actual
system did successfully remove a "pop" from a recording by
allowing human interaction (i.e., editing).

It was also expected that by using a flexible set of
software routines, it would be possible to remove tape hiss from
a tape recording. The actual system produced an increase in the
signal to noise ratio (6.8 dB) in regards to tape hiss, by
performing a Fourier analysis and editing on the signal.

Another goal set for the system was that it should not
introduce any new audible signals into the recording. The
actual system introduced no signals in the audible range into
the recording during either of the noise removal processes.

The actual system achieved all of the goals set for it.

7.2 DISCUSSION OF PROBLEMS
Several problems were encountered during the
implementation of the design. Most of the problems were related

- 4] -

to the printed circuit board manufacturing process.

Initially, trying to fit the entire main circuit on a
4 in. x 6 in. board that was too small for the purpose (but of
no cost), led to an extremely difficult routing task. The OrcCad
auto-router was of little use with a complex design in a small
area, and many of the routes had to be laid out manually. After
this tedious task was complete, the actual exposing and etching
of the board had to be very precise to prevent tracks being
broken or shorted, and to line up one layer of the board exactly
with the other. This step was very time consuming. The last
step of the board making process, the drilling of the holes for
vias and socket mounting, turned out to be the factor that made
using a board of this size impossible. There was no drill
bit/drill press available that could hold the tolerances that
the tightly packed copper tracks demanded. From here we
realized it would be necessary to use (and pay for) a larger
board for the circuit.

Once the larger board, which was 9 in. x 9 in., was
created, some additional problems were found. Some etching
occurred beneath the photoresist, which caused some of the
tracks on the board to lift. 1In order to compensate for this it
was necessary to lay down copper tape in several places on the
board. The use of copper tape made precise soldering a
difficult task. It was not until several trials of the board
until all of the broken lines were discovered and repaired.

The only problem not related to the manufacturing process
was the connections between the DAC and ADC chips to their

42

respective sockets, and the sockets to the copper tracks. These
two chips require a very good connection in order to properly
reproduce the signal without adding any noise to the signal.
Pressing on the chips during operation eliminated any noise

being created by the systemn.

7.3 SYSTEM LIMITATIONS

One improvement that can be made to the system would be
upgrading it to sixteen bit resolution. This would facilitate
CD quality reproduction of input music, and lower the noise
threshold of the system.

Another improvement that can be added is increasing the
memory capacity to accommodate an entire song. The capacity of
memory neccessary for this at sixteen bits is approximately
twenty four Megabytes for a four minute song. The additional
memory would allow the user to apply a transfer function to the
entire song at once.

Another modification would be to increase the sampling
and storage speeds of the system. Using oversampling techniques
simpler input and output filters can be used. Oversampling

would reduce phase distortion near the poles of the filter.

7.4 FUTURE DIRECTION

Because the system actually worked as well as the theory
predicted, there is a wide variety of possible future directions
for the project.

43

One of the more obvious paths would be to add more types
of digital filtering routines, to eliminate a wider range of
noise from music. Another software option would be to expand
the user interface routines and allow for easier user
interaction in the editing process. If a software function
could be written to aid the user in distinguishing between music
and noise, the utility of the system would increase greatly.

Another possible use for this system would be to keep
music archives. With the proper amount of error checking, no

faults should ever be introduced into the music stored.

- 44 -

REFERENCES

National Semiconductor, Linear Databook ¢3, pp 1-131 - 1-135,

1988.

J. V. Wait, L. P. Huelsman and G. A. Korn, Introduction to

Operational Amplifier Theory and Applications.

NY: McGraw-Hill, 1975.

Ibid.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.

Englewood Cliffs, NJ: Prentice-Hall, 1975.

Ibid.

APPENDIX A

MAKING PRINTED CIRCUIT BOARDS

The actual manufacture of a custom printed circuit board
is a lengthy and complicated process. First a circuit is
completed and tested. Then, with an appropriate program the
schematic is prepared. The trace for the board must be laid out
to 1:2 scale. A photographic process is then used to transfer
the trace to a copper clad board. Finally the board is
chemically etched and tinned to protect it. The process
consists of about twenty steps, and proper handling at each
stage is crucial to successful completion of the board. The
process described in this chapter is applicable to the

manufacture of one or two layer boards.

INITIAL DESIGN AND LAYOUT

Initial design is easily accomplished using a program
such as Orcad, which is available for student use in the
microprocessor laboratory on the second floor of Atwater Kent.
Using the program is fairly straightforward, but there are a few
details which are easily overlooked. The documentation is
lengthy and cumbersome. Not all simple questions are easily
answered.

Most of the common errors do not appear until one
attempts to create a circuit layout from a schematic created
with the drafting program. It is very important to assign each
unique part a unique reference, this makes it much simpler to

identify which components belong where, once the printed circuit

board is made. When multiple parts of the same chip are used
(such as the TL-084 op-amp chip which contains four distinct op-
amps), this prevents the computer from assigning each part to a
different chip. For transfer to a printed circuit board all
contacts must be drawn out with "wire" connecting the contacts.
Wire must always enter the part with a straight 1line
perpendicular to the part, and wire must never overlap the body
of a part. The key field is the part field that describes the
way the part will be physically placed on the board. IC chips
are easily placed, but the many variations in the size of
resistors, capacitors, and other small parts requires the user
to actually measure the part and compare it to the "modules"
available in pcb. A module is an exact description of the
number, size, and location of contact pads required for mounting
a part. Many standard packages are already available, but there
is no catalog. One must browse through the listing and find a
shape that will fit their part. Then one must return to draft
and set the name of the appropriate part field to the name of
the module. The part field to be used is the one selected as
the key field when one configures draft.

It is recommended that one become familiar with the
libedit function when first learning to use the system. Many
times a user will find it necessary to create a custom part to
use in a schematic. It is much better to create a custom
library of parts one needs, than to alter parts in the existing
libraries. Other users may be depending on the current library

configuration. To replace a part definition without altering

the standard libraries is fairly simple. Go to configuration
mode and place the name of the library in which the replacement
part appears, before the library in which the part is normally
contained. Then update the configuration. If anyone else is
relying on the original part definition, they need only remove
your library from the active list. It is necessary to create
part descriptions for special IC chips, for pads to connect
wires to the board, and for a more practical ground symbol.

It may sometimes be necessary to use libedit to fix
parts in the normal device libraries which did not work properly
with the pcb program. Many graphic parts have named pins
instead of pin numbers. This abnormality is not apparent until a
netlist is made from the schematic. In the netlist certain pins
of parts are named instead of numbered. If this is the case,
the pcb will interpret the information as connections that are
not made, because pcb expects part pins to be numbered, not
named. A user could simply edit their netlist file, changing
names to numbers. A more appropriate solution is to "replace"
illegally named parts with similar parts, but with numbered
pins. Familiarity with libed?t makes schematic layout much more
elegant, and provides the user with a better understanding of
the processes involved.

After successfully completing the schematic, one must
generate a netlist. I used a batch file which sets all the
appropriate options for the use of netlist. The use of a batch
file makes generating a netlist very simple, just type "ornet

filename". Placement of the netlist in the appropriate

directory is handled automatically. If any errors occur at this
level, it is better to go back to draft and work them out, than
to go on to pcb. Errors at this stage mean incomplete
connections, or a serious circuit design error. Once the
netlist is completed, a person may select the pcb program, and
begin laying out how parts will actually be placed.

The most important feature of pcb is that it can
automatically route the board. One simply selects the strategy
to be used, and the area to be routed. Pch is not perfect
however. It often misses a simpler track layout that might
cause other paths to remain unconnected. But computing the
"best" way of laying out an advanced circuit is an extremely
time consuming task for anyone. It would be impractical to do
it entirely by hand. The best solution is to use a rat's nest
view of the circuits, and to place some of the tracks in the
more confused areas manually, to simplify layout, and then let
the computer place the remaining tracks. After all the tracks
are placed, select the postscript driver, and have pch write the
layer image to disk. Then take the disk to CCC and print the
image out on one of the laser printers. For use with the EE
shop facility, pcb should be directed to make plots at double

size.

MANUFACTURE OF PRINTED CIRCUITS
Step 1:
The image produced is then taken to the dark room, where

a negative is to be made. The photographic part of the process

is crucial to the proper completion of the board. The first step
is to prepare the chemicals to be used. Most of the chemicals
are provided in powdered form, and must be mixed with water.
Since little of the chemicals is actually consumed, they may be
reclaimed for future use. For this reason it is better to mix
the powder with deionized water, because the tap water contains
many contaminants which may lead to premature fouling. The
Kodalith solutions A and B may be mixed together in equal parts.

They form the developing solution.

Step 2:

The fixing solution is poured straight from the container.
Also connect the rinse tray to the faucet and set the water
flowing slowly. Two trays are currently available, a large round
one and a large rectangular one. Since it is very important to
get all of the picture under the developer at the same time, the

rectangular one should be used for the developer.

Step 3:

The next step involves taking the photograph. Place the
frosted glass panel in the exposure area and line up the trace
behind the glass. It is important for the trace to be centered
in the film. The film used is only 8" x 10", and it is necessary
to leave a half inch border on each side. This means that the
largest board which can be produced with the camera in the shop
is roughly 7" x 9". Tape may be used to hold the image in place,

but should be affixed to the glass, not the non-reflective paper

used as a backing material.

Step 4:

Next turn on the small red lamp connected to the timer,
and locate the film to be used. Do not open the film until all
of the white and yellow light sources are turned off, and only
the red lights, which will not expose the film, are turned on.
Take out a piece, and examine it under the lights. One side will
be very glossy, and the other has a much duller finish. It may
be difficult to tell which side is which under the red light
conditions but looking closely at the reflection of the ceiling
lamps, one should be able to see the cracks in the lamp in the

shiny side.

Step 5:

Select two pieces of film and place them dull side up
inside the film carrier. Then slide the film carrier into its
place on the camera, and cover the rear of the camera with the
cloth. At this time one must make a point to carefully wrap and
store the remaining film. The film used is very expensive,
costing almost a dollar per negative, with roughly a hundred
negatives per box. Every negative will be ruined if the box of

film is exposed to white or yellow light.

Step 6:
Next remove the piece of plastic on the film carrier that

protects it from exposure. Make sure nothing white is near the

photo image surface, reflections will cause imperfections in the
photograph. Also make sure that nothing at all gets between the

camera and the image (hands, arms, coats,...)

Step 7:

Set the timer for the desired exposure time. The best
exposure time depends on the area of the picture and the ratio
of light to dark areas in the laser print. Press the metal
button to start the timer and activate the exposure lamps.

After the white light goes off, remove the film carrier, replace
the plastic shield, flip the carrier to the other side, remove
its shield, and take another picture. It is best to take two
pictures because it is very difficult to judge how developed a
picture is under low light conditions, and one will inevitably

come out better than the other.

Step 8:

After both pictures have been exposed, take one and place
it in the developing solution. Optimum developing time is
discovered by trial and error. The best way to judge the state
of the film is to take it out of the developer, rinse it off,
and look at it under the red light. Ideally, the tracks should
be perfectly clear, and the background should be dark enough not

to allow any light through.

Step 9:

When an image appears that it is dark enough for use,

rinse it off with water, and place it in the fixer. Leave it in
the fixer for at least one minute, then rinse it with rinse.
Unlike the developer, one minute or five minutes in the fixer
makes little or no difference, provided the minimum time of a

minute is observed. Repeat the process for the second image.

Step 10:

After the last negative has spent at least a minute in the
developer it is safe to turn the room lights on again. Once the
film is removed from the water be careful not to get fingerprints
on the negatives, try to keep them as clean as possible. It is
advisable to hang the negatives in a frame and allow the water to
dry off them slowly, over the course of an hour or so. Provided
neither negative has obscured tracks, the best choice is the one
with the darkest background, not the one with the clearest image.
It really does not matter if the hole in the center of the pad is
visible, but it is crucial that copper is only left on the parts

of the board where the copper is supposed to be.

Step 11:

The next step in the process is to expose the board to
ultraviolet 1light through the negative. The boards used are
sensitive to light except for certain red and yellow colors. The
board must not be exposed to room lights or daylight before
developing. Use only the red darkroom lights, which will not
affect the board. Mark the side of the board being used in an

area away from any tracks. This will prevent accidentally

exposing the same side of the board twice.

Step 12:

Lay the film on top of the exposer, then lay the negative
sensitized board on top of the film. It is a good idea to use a
board cut to the exact size, or to place reference marks on the
board layout so that one may be sure the pads on both sides of
the board will align correctly. Expose the board for two minutes
through the film, then expose the other side through the second

negative.

Step 13:

The photoresist developer contains Xylene, which is
carcinogenic, heavier than air, and highly flammable. Place the
developing tray in the shielded booth. The booth vents all of
the dangerous fumes to the outside. The booth fan should never
be turned off. Pour the developer into a tray, and hold the
board in the developer using the tweezers. Wash the surface of
the board with the liquid for two minutes, raising and lowering

the card within the developer to circulate the developer evenly.

Step 14:

Remove the board, pour the developer back into the
container, and close the glass door to prevent fumes from
entering the room. Bake the card in the oven for fifteen minutes

at seventy-five degrees Celsius.

Step 15:

Place the card in the ferric chloride acid bath before it
cools. If it is convenient to heat the acid as well, do so.
The more rapidly the acid attacks the copper to be removed the
better. The acid attacks the surface of the board, but may also
begin to attack the copper beneath photoresist from the sides.
This results in breaks in the tracks, or poor contacts. For
large or double sided boards it is helpful to keep some powdered
ferric chloride available to add as the solution begins to
weaken. For double sided boards the bottom of the board should
be raised above the bottom of the tray using glass rods or
beads. Using beads ten millimeters or larger also has the
desired effect of rolling freely across the surfaces. This
agitates the acid, and helps to remove copper from the board
surfaces. Occasionally removing the card from the acid and

washing the surface with water also helps somewhat.

Step 16:

The final step is to drill holes in the proper locations
on the board, making use of the small drill press in the dark
room. With all the holes drilled, the board is ready for socket
mounting. Be certain to test for broken or cross-connected
tracks before and after soldering parts onto the board. Unwanted
connections in the copper are easily cut and lifted out. Small
wire jumpers are easily soldered across breaks in tracks. Minor

defects will not render the board unusable.

APPENDIX B

351 LTS A A SLE CE E LT

b
SBQURN FUBUNDO oNaML
ST1eWaYDds A ldand JBMO4

LARRP!
OT1T84n QoY
A5PUDY 1PeYDTY
BINITIBUT STUMDIGR (Vg WBIEITIUOM
AST-
STELWT
2n
910
=aT
T12lE
Elolel 3401Q 330010
5 ~lo d

o
|
83

DO

[
z|
[
o
[+9
-
W
a
o
L ond
(=]
W
Q
o
-
Q

0dI

m

A L

T 39 1BBUGIOCET 6Z JIGUIAON B3
8 Q00T &%H]
REL Ulal Y *C.EBUOO&ﬁu&
S¥34114 3IONUQ3dWI
3137
OOISAN 368 ANY HIANId 3INIW
ALALTISNT DINHO3IATIOL A3 LSIVUOM

I

G.

<

N 10°

a_ﬂj AEY
S 1 P
0094I9¥S
95~ 53 sb 202 Q2 294
avs = T v{ o°n asy
- /- TY 118
'y AN g 10d1no 0T 1ld|—%
SO soNd NI 333 6 118
400 any | —3H 13sa3e 8 ila
o <L el L NMOMLIIN . 118
= = - Adom13N 9 LT@
avd MYOMIIN & 1Ia
- ansy v 1Ia
T RETS 20A+ £ 1Ia
ST ray wiuo Z ila
10 434 asw
Z Oud

DIA
A0 o I o] i i
43
* loosd1a0Z > mmwmvmmmm 00£d41002 seesscd y oosd41a0z sesesice y
siisys xwoxm »255h0r2 | 15583248 33 vessivs | 13858348 3
_ ”luhuwmm_mm._ sfel ¥ “ 19 ¥
00241997 M wmw gea IHI
Fry s < D
b1 2801 34 "
g =
3 £a51 55
s 9801 ummm 23— T ——— TOIST
B Cw +
O s el
81555885 mmmmwmwmmm
o9stiE leressegesst 333 N
R A TR
- _ LH_
rl JIPWUU\?.L | n” Wi
mo»mwwwm m M_&mm mm_mmmmm& -ﬂﬂﬂﬂﬂw_ﬂw_& avd M9 W
o1
soro 248ERIEEERREIEDIERLEDLREE (o
sowo> R 22 1> 1233333424333 23 P IR TITTL
937 T
s S e i
0N£d41Q02
msM 0T£d3
29A 4 NI O“W ”“m
o NI o1
NI osI
NI ool
Moo
—¥1 HO0D

APPENDIX C

24eM1}0S JO weuabe1g 30019

:G auanb14

upw] fod feul] (W
nyels
ejypeel| ejysium dnueis
1se}| [we)s/s|Joupe|[sisApeue] Aeidsip| poeqAeld | ejdwes|suogonssul

urew

/MQP/MQP.C
*

* mgp.c
*

* main routine, controls various functions of microprocessor
* filter.
*

*/
#include <std.h> /* File i/o macros */
#define height 24 /* Screen height */

#define false 0
#define true 1

/* global variables */

char ~ FNAME[64]; * Filename to be used */

char START[3] = { 0, 0, 0}; /* Beginning and end points of */
char FINISH[3] = { 255, 255, 255}; /* Data segment being manipulated */
char SPEED = 1; /* Rate at which data was recorded */

/* hardware equates */

char *MEMSEL
char *MELOW
char *MEMID
char *MEHIGH
char *MEDATA

0xc500; /* Select Ramcard */

0xc0d0; /* Low byte of address */
0xc0d1; /* Middle byte of address */
0xc0d2; /* High byte of address */
0xc0d3; /* Data byte address */

main ()
char key;
settxt();
home () ;
putstr("WARNING --- This program uses the memory on the slot five\n");

putstr("ram card. Proceeding beyond this point will result in the\n");
putstr("destruction of any files stored on volume /RAM5\n\n");
putstr("Are you certain you wish to proceed? (y/n) ");

1f(getkey() == 'n')

putstr("\n\n");
exit();

ey = "\n';
¥hile(key = '0")

home () ;

cursor(0,19);

putstr("MQP HGR- 1000 Microprocessor Based Filter\n");

putstr ”\n}tThis software is designed to work with an experimental\n");
putstr("\tfilter card created for Apple II computers.\n");
putstr("\tVarious features of this software can be run without the\n");

putstr("\tboard present, but the system may lock up.\n");
putstr("\nMain menu:\n");

putstr("\t1.\tView instructions\n");

putstr("\t2.\tSample modeén");
putstr("\t3.\tPlayback mode\n");
putstr("\t4.\tDisplay mode\n");
putstr("\t5.\tAnalysis\n");
putstr("\t6.\tEditor mode\n");
putstr("\t7.\tOperating system functions\n");
putstr("\t8.\tLoad test data\n");
putstr("\t0.\tExit program\n");

key = menu('8');

switch(key)
{
case '1':
instructions();
break;
case '2':
sample();
break;
case '3':
playback();
break;
case '4':
display();
break;
case '5':
analysis();
break;
case '6':
editor();
break;
case '7':
system();
break;
case '8':
test();
} break;
ﬁ /* note: A key value of '0' terminates this loop */
ome () ;
}
instructions()
char filename[20] = "/mqp/mqp.helpfile";
char c, p, cnt;
FILE fp;
cnt = 0;
fp = open (filename);
home () ;
while ((c=getc(fp)) !=-1)

if (¢ == '"\n' && ++cnt == height) /* uses the partial evaluation */
/* of if statement to increment */
p = getkey(); /* counter */
3 14!

if (p=="q" ||p=="0"

putchr('\n');
return(1);

cnt = 0;

}
1f (e >= ' " &k c < O0x7f || ¢ == "\n' || ¢c =="\t")
putchr(c); /* Filter output characters */

close(fp);
wait_return();

}

sample()

char key;

home () ;

putstr("Executing 8 bit sample mode\n");
putstrE”Press any key to begin...\n");
fastsample();

}
playback()

char key, bufr[2];

/* This routine takes data currently stored in memory and pipes it out to
the user through the D/A port. Start and end points are user selectable */

home() ;

putséz "This section plays data stored in memory out through the\n");
putstr("D/A port. Any segment of the data stored in memory may be\n");
putstr("played back. Use the arrow keys to change the settings.\n");
putstr("The output will loop until a key is pressed...\n");

getstart();

getfinish();

printf§” nSpeed = %x%x -->", SPEED / 16, SPEED & 0x0f);

if ((butr 0} = get_hex()) != Oxff)

’

if ((bu rél = get_hex()) == Oxff)
SPEED = bufr(0];
else
SPEED = bufr{1] + 16 * bufr[0];
home () ;
putstr("Executing Eight bit playback mode\n");
play8();

}
display()

/*

Display takes data already stored on the memory card and shows it on
the screen as hexadecimal data. It is used to tour through data
sampled and stored in memory */

{
char done, key, temp;
char i, 3;

/* This code segment verifies data is available for viewing, then gets the
start address from the user, and loads the address into the RAM card */
home () ;
putstr("Display mode \n\n");
putstr("\tThis function opens a window which can display\n");
putstr "%§f0rmation currently stored on the desktop.\n"g;

etstart();
5MEMSEL = 0;
*MEHIGH = START[2];
*MEMID = START[1];
*MELOW = START[0];

/* This is the segment that actually displays the data on the card to
the screen. Incrementing of the data location is handled automatically
by sequential accesses to the location MEDATA. MEHIGH, MEMID, and
MELOW always contain the current data location, as they are
incremented sequentially by hardware. */
done = false;
while(!done)

for(i = 0; 1 < 20; i++)
{
printf ("OxVxVxixUx%x - ", *MEHIGH & OxOf, *MEMID / 16,
*MEMID & OxOf, *MELOW / 16, *MELOW & 0xOf);
for(j = 0; j < 165 j++)
temp = *MEDATA;
printf (" 7x7x", temp / 16, temp & 0x0f);
} putchr('\n'");
ﬁgtstr("énﬁ?gtinue? (y/n) ")
y = getyni);
if (key == 'n'")
done = true;
putchr('\n');
}

}

analysis()
home () ;

putstr ”QtAnalysis menu....}n”);
putstr("Frequency analysis functions are handled by another program\n");

putstr("written in BASIC. This program will set up the data files\n");

putstr("required, but you must manually run the other program.\n");
putstr("This program will ask for the start address for analysis,\n
putstr("set up the ramcard, and then exit. You must type 'bye',\n");
putstr("then select BASIC.SYSTEM to run the analysis programs\n\n");
putstr("We apologize for the inconvenience...\n"g;
putstr("Are you sure you want to do this? (y/n) ");
if(getyn() == 'n'")

return;
putchr('}n');
getstart();
exit();

}

editor()

char done, key, temp, bufr[2];
char i, j;

home () ;

putstr("Editor mode\n\n");
getstart();

done = false;
Yhile(!done)

*MEMSEL = 0;
*MEHIGH = START[2];
*MEMID = STARTil ;

*MELOW = START[0] & 0xfO;

printf ("\nOx7x7x/Ax/x%x -", *MEHIGH & OxOf, *MEMID / 16,
*MEMID & OxOf, *MELOW / 16, *MELOW & 0xOf);

for(i = 0; 1 < 16; i++)

temp = *MEDATA;
printf(" 7x%x", temp / 16, temp & 0x0f);

MEHIGH = START[2];

*MEMID = START[1];

*MELOW = START[0];

printf ("\nOx/ixAx%x%x%x = ", START[2] & OxOf,
START[1] / 16, START[1] & OxOf,
START[0] / 16, START[0] & OxOf);

temp = *WEDATA:

printf§"%x%x -->", temp / 16, temp & OxOf);
if ((bufr[0] = get_hex()) == Oxff)
return;
if ((bufr[1] = get_hex()) == Oxff)
temp = bufr([0];
else
temp = bufr(1] + 16 * bufr[0];
*MEHIGH = START{2];
*MEMID START[l];

"ol

*MELOW = START[0
*MEDATA = temp;

if(!§++START[O]) && ! (++START[1]) && !(++START[2]))

one = true;

/* partial evaluation of the if clauses is used to increment the
current position */

}
tem()
?ys e

char key;

home() ;

putstr("System Function Menu\n\n");
putstr("\tl.\tSave desktop data to file\n");
putstr("\t2.\tLoad desktop data from file\n");
putstr("\t0.\tExit to previous menu\n");

key = menu('2');

?witch (key)

case '1' : 0
getstart();
getfinish();
getfname();
writefile();
break;

case '2' :
getfnamegg;
readfile
break;

Y

} }

test() /* Loads precomputed data onto desktop for verification */
char key; /* holds value passed from menu routine */

/* data image for a sinusoidal waveform */
static char sinusoid[32] =
128, 152, 176, 198, 217, 233, 245, 252,
255, 252, 245, 233, 217, 198, 176, 152,
128, 104, 80, 58, 39, 23, 11, 4,
1, 4, 11, 23, 39, 58, 80, 104 };

/* data image for a square waveform */
static char square[32] =
0o, o0, o0, 0, 0, O, 0, 0,
’ ’ OJ O’ 09 09 Oa 07
255, 255, 255, 255, 255, 255, 255, 2
255, 255, 255, 255, 235, 255, 255, 2

vy
5}

/* data image for a triangular waveform */
static char triangle[32] =
0, 16, 32, 48, 64, 80, 96, 112,
128, 144, 160, 176, 192, 208, 224, 240,
956, 240, 224, 208, 192, 176. 160, 144,
128, 112, 96, 80, 64, 48. 32, 16 };

.

St Ot
T

char *image; /* pointer to appropriate data image */

char i, j;

home () ;

putstr("Test data generator menu:\n\n");

putstr("\tThis functions allows one to load precomputed test data\n");
putstr("onto the desktop for testing and verification.\n");
putstr("\nTest menu:\n");
putstr("\t1.\tSinusoid data\n");
putstr("\t2.\tSquare wave data\n");
putstr("\t3.\tTriangle wave data\n");
putstr("\t0.\tExit to previous menu\n");
key = menu('3');

putstrE"\n\tLoading data image...\n");

switch(key)

case '1': /* image data for a sinusoid */
image = sinusoid;
break;

case '2': /* image data for a square wave */
image = square;
break;

case '3': /* image data for a triangle wave */
image = triangle;
break;

case '0': /* exit to calling program */
return;
break;

putstr("\n\tLoading 1024 data points into desktop...\n"):
MEMSEL = 0; / Select ram card hardware */

MELOW = 0; / Set address for card to start of space */
*MEMID = 0;
*MEHIGH = 0;

for(i = 0; 1 < 32; i++)
for(i =0; j < 32; j++)
MEDATA = *(image + j);

0; /* Set data start point to 0x00000 */

»

0;

START [1
START [0

FINISH{ZJ

START{21

ouon

0; /* Set data end point to 0x003ff */

FINISH{1 ;
Oxff;

FINISH[O

wait_return();

}

char get_hex()

char key, value, done;
key = 0;
done = false;

¥hi1e(!done)
key = getkey();

if ((key == "\n') | ey >= '0') && (key <= '9"))
|| ((key >= ' (key <= '1")))
done = true;
if(key == "\n')
value = 255;
if((key >= '0") && (key <= '9"))
value = key - '0';
if((key >= ' '{ bk (Ley <= 'f"))
} value = 10 + key - 'a';
putchr(key);
return value;
}
wait_return()
char key;
key = 0;

putstr("\nPlease press <return> to continue...");
whlle(key I= '\n'g

$etkey
putchr(\n

}

char menu(options)

char key;

printf("\n\t\tYour choice? (0-%c) ", options);
key = "\n';
while((key < '0') || (key > options))

ey = etkey()
printf("ic % key)
return key;

}
fhar getyn()

char keypress;
keypress = '\n';
while(keypress I= 'n 'g &t (keypress != 'N!
&k (keypress != 'y') &k (keypress != 'Y'))
keypress = getkey()
?w1tch (keypress)

!.

case 'n':

case 'N':
keypress = 'n';
break;

case 'y':

case 'Y':
keypress = 'y';
break;

return(keypress);

ietstart()

* This routine prompts the user for a start address. It is called by
the display, playback, and save routines. */

char done, index, key;
char adrs[5];

done = false;

index = 0;

adrs[0] = START[2] & OxOf;
adrs[1] = START[1] / 16;
adrs{2] = START[1] & OxOf;
adrs{3] = START[0] / 16;
adrs[4] = START[0] & OxOf;

Yhile(!done)

cursor(10,0);

putstr("Start Address >0x");

printf ("IxIxIxTxx", adrs[0], adrs[1], adrs[2], adrs[3], adrs[4]);
cursor(10,17 + index);

key = getkey();

switch(key)

* Up arrow */
case 0x0b :
adrs[index] += (adrs[index] < 15);
break;
/* Down arrow */
case 0x0a :
adrs[index] -= (adrs[index] > 0);
break;
/* Right Arrow */
case 0x15 :
index += (index < 4);
break;
/* Left Arrow */
case 0x08 :
index -= (index > 0);
break;
/* Return adrs */
case '\n' :
done = true;
break;

START[2] = 240 + adrs[0];
START[1] = 16 * adrs[1] + adrs[2];
START{0] = 16 * adrs{3] + adrs[4];
putchr('\n');
putchr('\n');
return;
}
etfinish()
;* This routine prompts the user for an end adrs. It is called by

the playback, and save routines. */

char done, index, key;
char adrs[5];

done = false;

index = 0;

adrs[0] = FINISH[2] & OxOf;

adrs([1] = FINISH[1] / 16;

adrs{2] = FINISH[1] & Ox0f;
~adrs[3] = FINISH[0] / 16;

adrs[4] = FINISH{0] & OxOf;

?hile(!done)

cursor(12,0);

putstr("End Address >0x");

printf ("7xIxIxIx%ix", adrs[0], adrs[1], adrs[2], adrs[3], adrs[4]);
cursor(12,17 + index);

key = getkey();

switch(key)

* Up arrow */
case 0x0b :
adrs[index] += (adrs[index] < 15);
break;
/* Down arrow */
case 0x0a :
adrs[index] -= (adrs[index] > 0);
break;
/* Right Arrow */
case 0x15 :
index += (index < 4);
break;
/* Left Arrow */
case 0x08 :
index -= (index > 0);
break;
/* Return adrs */
case '"\n' :
done = true;
break;

%INISH 2 240 + adrs[0];
FINISH[1 16 * adrs[1] + adrs[2];
FINISH|O 16 * adrs|3] + adrs[4
putchr('\n');

putchr('\n');
return;

’

}

writefile()
FILE fp;
fp = create(FNAME);
putc(fp, SPEED);
*MEMSEL
*MEHIGH

*MEMID
*MELOW

/* Prepare ramcard for sequential read */

START[1
START [0

Y

0;
START ﬁ :

{1 I T |

/* This part writes segments of 65,536 bytes */

while(*MEHIGH != FINISI[2])
putc(fp, *MEDATA);

/* This part writes segments of 256 bytes */
while(*MEMID != FINISH[1])
putc(fp, *MEDATA);

/* This part writes the remaining bytes to the file */
while (*MELOW != FINISH[0])
putc(fp, *MEDATA);

close(fp);
return;

}

readfile() /* Open file for input */

{

char c;
FILE fp;

fp = open(FNAME);
SPEED = getc(fp);

*MEMSEL = 0;
*MEHIGH = 0;
*MEMID = 0
*MELOW = 0;
START[2] = 0;
START[1] = 0;

START[0] =

/* This part reads se$ments the entire file */

whlleé(c = g?tg(fp))

FINISH[2] = *MEHIGH;
FINISH{1] = *MEMID;
FINISH[0] = *MELOW;
close(fp);
return;
}
%etfname()
char i;
putstré"\nPlease type the file's complete Prodos pathname.\n");
conRea (FNAME 64);

putchr('\n');
for(i = 0; 1 < 64; 1++)
1f(FNAME i] == "\n")
FNAME[1] = O;
return;

/MQP/MQP . HELPFILE

HGR-1000 A Microprocessor Based Filter

by Michael Pender and Rob Ursillo

This MQP deals with the design and construction of a
Microprocessor based filter to remove certain types of noise from

0ld music recordings.

Conventional filters, such as a bandpass, may reduce the
amount of noise at the stage of reproduction, but cannot remove

errors that have become part of the recording.

Certain types of noise, such as the pop due to record
needles, are very difficult to filter by analog means. When
viewed on an oscilloscope they look like a step, or rectangle
wave. To an analog filter they look like a primary harmonic and
an infinite number of associated harmonics, spread evenly across

the entire spectrum.

But using a programmable digital playback system it should
be possible for a person actively listening to "edit" the
waveform until it sounds right. Also, using FFT derived
frequency responses from the sampled data, a person may

selectively reduce the amplitude of certain frequencies.

—— - ——— > - —————

The system is implemented using a 12 bit analog to digital
converter, and a matched 12 bit digital to analog converter.
Input and output are passed through low-pass filters (two pole,
Fc = 23,000 Hz) to match impedances and voltage levels. In
addition it provides a level of isolation between the chips which
interface with the microprocessor and the real world.

Input sampling is performed by a Micronetworks MN6231 chip.
In eight bit mode they guarantee 100,000 samples / second.

Output is passed through a Micronetworks DAC80 chip. These chips

are capable of producing over 200,000 values per second.

Most of the system software is written in the Hyper C Prodos
language. Drivers for the hardware are written in 6502 assembly
code, and interfaced to the C shell. Due to the difficulty in
handling graphics or floating point calculations in C, analysis
software is written in BASIC, and data points are passed between

the two in the slot five ramcard.

The software expects the microprocessor filter card to be in
slot seven, and an Apple Memory Standard ramcard in slot 5.

Input and output of data files is handled through standard Prodos

8 pathnames, so data images may be stored on any Prodos
compatible device in any slot except the ramcard, or the slot

used by the filter.

The system was implemented on a Laser 128ex, with a fully
populated one megabyte ramcard in slot five, and the filter
connected to slot 7. A 3.5 inch drive was also connected to slot
seven. To store files on the 3.5 inch drive we just flipped the

slot seven switch and locked the card hardware out.

/MQP/STARTUP

100 REM startup program

110 HOME :D$ = CHRS (4)

120 PRINT DS$"pr#3"

125 ©PRINT : VTAB 5

130 PRINT "Analysis main menu:"

135 PRINT

140 PRINT "1. FFT analysis of data"

150 PRINT "2. Plot utility”

160 PRINT "3. Filter utility"

170 PRINT "O0. Return to main program"

200 VTAB 15: PRINT "Your choice? (0-3) ";

210 GET A$: IF (A$ < "O") OR (A$ > "3") THEN 210
220 ON VAL (AS$) + 1 GOTO 4000,1000,2000,3000
230 END

1000 PRINT D$"-FFT"

1010 END

2000 PRINT D$"-PLOT"
2010 END

3000 PRINT D$"-FILTER"
3010 END

4000 PRINT D$"-C.SYSTEM"
4010 END

/MQP/MQP1.A

; This file contains the machine- specific information required to

; make the system software work with the hardware on an Apple II system.
; The code expects a slot 5 ramcard. It will use as much slot five

; memory as present, up to 1 meg.

; Time intensive tasks, such as sampling and playback routines, are in this
; section.

nolist
sp = 0xf4
sph = sp+1
fp = sp- 2
fph = fp+1
pc = fp-2
pch = pc+l
rl = pc-2
rith = ri+l
r2 = rl-2
r2h = r2+1
r3 = r2-2
r3h = r3+1
rd = r3-2
r4h = r4+1
jp = r4-2
jph = jp+l
smask= jp-2

smaskh= smask+1
dsply= smask- 32
Tp = dsply-2

; Specific equates for dealing with hardware.

; One sets up the address to write to by setting MELOW, MEMID, and MEHIGH,
; then reading/writing MEDATA. Addresses are automatically incremented for
; sequential read/writes.

MEMSEL = 0xc500 ; select ramslot hardware

MELOW = 0xc0d0 ; low address byte of 1 meg space
MEMID = Oxc0d1 ; middle address byte of 1 meg space
MEHIGH = 0Oxc0d2 ; high address byte of 1 meg space
MEDATA = 0xc0d3 ; data address for 1 meg space

; One tells the aéd to begin taking a sample by writing to a strobe

; address. The chip takes 10/15 microseconds from being strobed until
; data is ready. To determine the status of the card read the STATUS
; register. When the data is ready bit 7 of STATUS will be high,

; At which point one can read the data bits.

STATUS = 0Oxc0f0 ; address for A/D channnel status
STROBE = 0xc0f3 ; address to tell A/D to take an 8 bit sample
AD H = 0xc0f2 ; address for high 8 bits of a/d channel

; The D/As are dumb chips. They must be latched, because they contain
; no latches of their own. There is no status line to check for these.
; The D/As may take up to two microseconds to settle on the appropriate
; value for a full scale deflection, so allow at least two microseconds
; between successive write cycles.

DA H = Oxc0f4 ; address for high 8 bits of d/a channel
.list
.even
.entry fastsample

_fastsample:

This routine performs an eight bit sample using only the left channel.
Even on its slowest loop the routine can store more than 100,000 samples
per second. The a/d chips on the card are only designed to process up

to 100,000 samples per second. This means the routine is faster than
necessary. The routine is written using a wait loop that checks the
status of the a/d channel and waits until the card has completed acquiring
; a new sample.

e e e we we we

; fast pass: 20 cc + 3 usec : 8.56 usec -> 116.9 ks
; slow pass: 25 cc + 3 usec : 9.94 usec -> 100.6 ks

lda #0 ; Inform c-shell we will not be sending
tay ; back any parameters
jsr Alnk

; sta 0xc010 ; Clear keyboard strobe

s7:
1da 0xc000 ; Wait for a keypress
bpl fs7
lda #0
sta MEMSEL ; select 1 meg ram hardware
sta MELOW ; set address = 0x00000
sta MEMID
sta MEHIGH
ldx #Oxff

ts6:

; sta STROBE ; Strobe to begin taking a sample

$5:

lda STATUS ; Check channel status
bmi £s5 ; 1f a/d not ready, wait
1da AD H ; Get sample value
sta MEDATA ; Store value in memory
cpx MEHIGH
bne fs6
ldx H#Oxff

fs4:
sta STROBE ; Strobe to begin taking a sample

fs3:

lda
bmi
lda
sta
cpx
bne
1dx
fs2:
sta
fst:
lda
bmi
1da
sta
cpx
bne

jmp

.even

STATUS
fs3
AD H
MEDATA
MEMID
fs4

#0
STROBE

STATUS
fsi
AD H
MEDATA
MELOW
fs2

Artn

.entry play8

_play8:

we s e we

Check channel status
If a/d not ready, wait
Get sample value

Store value in memory

Strobe to begin taking a sample

Check channel status
If a/d not ready, wait
Get sample value

Store value in memory

Return to caller

; This routine interprets the data on the ramcard as eight bit data, and
; outputs it to the D/A port.
; called speed, which controls the delay hetween successive writes to
; the D/A port.

lda
tay
jsr

sta
play0:
sta
lda
ora
sta
lda
sta
lda
sta

lda
ora
sta
lda
sta
lda
sta

ldx
playi:
lda

#0
Alnk
0xc010

MEMSEL
_START + 2
#0xf0
MEHIGH
_START + 1
MEMID

" START
MELOW

_FINISH + 2
#0x£f0

rl

_FINISH + 1
r2

_FINISH

r3

ri
MEDATA

bl

b

b

b

Al

9y

An external reference is made to a variable

; Inform c-shell we will not be sending
; back any parameters

; Select ramcard hardware
; Fetch the start and end points of

; sample segment to be played.

Fetch byte to be ported

ldy

play2:
dey
nop
bne
sta
cpx
bne

ldx
play3:

lda

ldy

play4:
dey
nop
bne
sta
cpx
bne

ldx
play5:

1da

1dy

play6:
dey
nop
bne
sta
Cpx
bne

lda

bpl
sta

jmp

_SPEED

play2
DA H
MEHIGH

playl
r2

MEDATA
_SPEED

play4
DA H
MEMID

play3
r3

MEDATA
_SPEED

play6
DA H
MELOW

playb
0xc000
play0
0xc010

Artn

.extern _START

.extern FINISH

.extern SPEED

e

b

Determine playback speed
Delay till timing is right

Write byte to port
Check to see if MEHIGH matches FINISH
If not loop

Fetch next data byte
Fetch playback delay timer

Delay till timing is correct

Write byte to port
Check to see if MEMID matches FINISH
If not loop

Fetch next data byte
Fetch playback delay timer

Delay till timing is correct

Write byte to port
Check to see if MELOW >= FINISH
If not loop

Wait for a keypress

Return to calling function

Where to begin playing back
Where to finish playing back
Controls rate of playback

/MQP/FFT

10 DIM ST(2):ST(0) = PEEK (49360):ST(1) = PEEK (49361):ST(2)
= PEEK (49362)

100 TEXT : HOME : PRINT "FFT routine:"

110 PRINT : PRINT "1 - 1024 point FFT"

115 PI = 3.1415926

120 PRINT "2 - 512 point FFT"

130 PRINT "3 - 256 point FFT"

140 PRINT "4 - 128 point FFT"

150 PRINT "5 - 64 point FFT"

160 PRINT "6 - 32 point FFT"

170 PRINT "0 - Exit"

200 VTAB 12: INPUT "Your choice? ";AS$

210 ON VAL (AS$) GOTO 300,320,340,360,380,400,220

215 GOSUB 10000

220 PRINT CHRS (4)"-STARTUP"

230 END

300 T = 1024: GOTO 1000
320 T = 512: GOTO 1000
340 T = 256: GOTO 1000
360 T = 128: GOTO 1000
380 T = 64: GOTO 1000
400 T = 32: GOTO 1000

1000 DIM A(T),B(T),F(T): VTAB 15: PRINT "Generating FFT
values..."

1010 GOSUB 10000: PRINT "...reading data points..."
1020 FOR I = 1 TO T:A(I) = PEEK (49363): NEXT

1080 PRINT "...generating FFT values": GOSUB 6000
1085 PRINT "...storing generated values"

1086 PRINT CHRS$ (4)"OPEN /RAM/FFT.DAT"

1087 PRINT CHR$ (4)"CLOSE"

1088 PRINT CHR$ (4)"DELETE /RAM/FFT.DAT"

1090 PRINT CHR$ (4)"OPEN /RAM/FFT.DAT"

1100 PRINT CHR$ (4)"WRITE /RAM/FFT.DAT"

1110 PRINT T: PRINT ST(0): PRINT ST(1l): PRINT ST(2)

1120 FOR I = 1 TO T: PRINT A(I): PRINT B(I): NEXT

1130 PRINT CHR$ (4)"CLOSE"

1135 GOSUB 10000

1140 PRINT CHRS (4)"-STARTUP"

5000 REM Conversion of FFT routine from Oppenheim and Schaffer
5010 REM figure 6.18

5020 REM a and b are meant to represent one complex array.
5030 REM u, w, and t are complex scalars

6000 LT = LOG (T) / LOG (2)

6005 DIM P2(20):P2(0) = 1: FOR I = 1 TO 20:P2(I) = 2 * P2(I -
1) : NEXT I

6010 FOR L =1 TO LT

6020 LE = P2(LT + 1 - L):1L1
6030 WA = COS (PI / L1):WB
6040 FOR J =1 TO L1

6050 FOR I =J TO T STEP LE
6060 IP = 1 + L1

6070 TA = A(I) + A(IP):TB = B(I) + B(IP)

LE / 2:UA = 1:UB = 0O
- SIN (PI / L1)

6080
6090
6100
6110
6120
6130
6180
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6285
6290

10000
49362,

VA = A(I) - A(IP):VB = B(I) - B(IP)
A(IP) = VA *# UA - VB * UB:B(IP) = VA * UB + VB * UA
A(I) = TA:B(I) = TB: NEXT I
VA = UA:VB = UB
UA = VA * WA - VB * WB
UB = VA * WB + VB * WA: NEXT J,L
J =1
FORI =1TOT -1
IF I > = J THEN 6240
TA = A(J):TB = B(J)
A(J) = A(I):B(J) = B(I)
A(I) = TA:B(I) = TB
= 2
= J THEN 6280

=

I

e
OxRGQ=RA3

: GOTO 6250
: NEXT I

FOR I = 1 TO T:A(I) = A(I) / T:B(I) = B(I) / T: NEXT
RETURN

POKE 50432,0: POKE 49360,ST(0): POKE 49361,ST(1): POKE
ST(2): RETURN

+N 1 VX

axYy
oo
=N R

/MQP/PLOT

10 LOMEM: 16384

20 DIM ST(2):ST(0) = PEEK (49360):ST(1) = PEEK (49361):ST(2)
= PEEK (49362)

100 TEXT : HOME : PRINT "PLOT Utility:"
105 PI = 3.1415926

110 PRINT

140 PRINT "1 - 1024 points"

150 PRINT "2 - 512 points"

160 PRINT "3 - 256 points"

165 PRINT "4 - 128 points"

166 PRINT "5 - 64 points"

167 PRINT "6 - 32 points"

170 PRINT "7 - Plot FFT data"

175 PRINT "8 - Only Mag. with phase"
178 PRINT "9 - View reconstruction"

180 PRINT "0 - Exit"

185 VTAB 14: INPUT "Your choice? ";AS$
190 ON 1 + VAL (A$) GOTO 200, 250, 300, 350, 360, 370, 380,
5000, 6000, 8000

195 GOSUB 10000

200 PRINT CHR$ (4)"-STARTUP"

250 E = 1024: GOTO 400

300 E = 512: GOTO 400

350 E = 256: GOTO 400

360 E = 128: GOTO 400

370 E = 64: GOTO 400

380 E = 32: GOTO 400

400 S = 1024 / E: GOSUB 3000
410 ON Al GOTO 1000,2000

1000 HGR : GOSUB 10000

1010 EC = 0:SC = 0: HCOLOR= 3

1020 HPLOT INT (SC / 4),128 - INT (PEEK (49363) / 2)

1030 SC = SC + S:EC = EC + 1: IF EC < E THEN 1020

1040 GOSUB 4000: HOME : VTAB 22: PRINT "Waiting for a
keypress..."

1050 IF PEEK (49152) < 128 THEN 1050

1060 POKE 49168,0: RUN

2000 HGR

2005 GOSUB 10000

2010 EC = 0:SC = 0: HCOLOR= 3

2015 HPLOT INT (SC / 4),128 - 1INT (PEEK (49363) / 2)

2020 SC = SC + S:EC = EC + 1: IF EC > = E THEN 2040

2030 HPLOT TO INT (SC / 4),128 - INT (PEEK (49363) / 2):
GOTO 2020

2040 GOSUB 4000: HOME : VTAB 22: PRINT "Waiting for a
keypress..."

2050 IF PEEK (49152) < 128 THEN 2050

2060 POKE 49168,0: RUN

3000 VTAB 17: INPUT “"Connect the dots? (Y/N) ";A$: IF NOT ((A$
= "y") OR (A$ = "y") OR (A$ = "N") OR (A$ = "n")) THEN 400

3010 Al = 1 + (AS = "Y") + (AS$ = "y"): RETURN

4000 HOME : VTAB 22: INPUT "Grid lines? (Y/N) ";A$: IF NOT

((A$ = "Y") OR (A$ = "y") OR (A$ = "N") OR (A$ = "n")) THEN 4000
4010 IF (A$ = "n") OR (AS$ = "N") THEN RETURN

4020 FOR I = O TO 140 STEP 12.8: HPLOT O0,I TO 255,1I

4030 NEXT : HCOLOR= 2: HPLOT 0,64 TO 255,64: RETURN

5000 GOSUB 7000:PI = 3.14159265

5010 HGR : HCOLOR= 3:N =1

5020 FOR I = 0 TO 255 STEP (256 / T)

5030 HPLOT I,33 TO I,33 - INT (SQR (A(N) * A(N) + B(N) *
B(N)) / 8)

5040 IF B(N) = 0 THEN A = PI / 2 * SGN (A(N)): GOTO 5060
5050 A = ATN (A(N) / B(N)) / PI * 32

5060 HPLOT I,64 TO I,64 - INT (A)

5070 HPLOT I,128 TO I,128 - (INT (SQR (A(N) * A(N) + B(N) *
B(N)) / 8) * SGN (A))

5080 N = N + 1: NEXT

5090 HOME : VTAB 21: PRINT "Magnitude / Phase / Magnitude with
Phase"

5100 VTAB 23: PRINT "Waiting for a keypress..."

5110 IF PEEK (49152) < 128 THEN 5110

5120 RUN

6000 GOSUB 7000:PI = 3.14159265

6010 HGR : HCOLOR= 3:N = 1

6020 FOR I = 0 TO 255 STEP (256 / T)

6040 IF B(N) = 0 THEN A = PI / 2 * SGN (A(N)): GOTO 6070
6050 A = ATN (A(N) / B(N))

6070 HPLOT I,96 TO I,96 - (INT (SQR (A(N) * A(N) + B(N) *
B(N)) / 2) * SGN (A))

6080 N = N + 1: NEXT

6110 IF PEEK (49152) < 128 THEN 6110

6120 RUN

7000 PRINT CHRS (4)"OPEN/RAM/FFT.DAT"

7010 PRINT CHRS$ (4)"READ/RAM/FFT.DAT"

7020 INPUT T: DIM A(T),B(T)

7025 INPUT ST(0),ST(1),ST(2)

7030 FOR I = 1 TO T: INPUT A(I),B(I): NEXT

7040 PRINT CHRS (4)"CLOSE"

7050 RETURN

8000 GOSUB 7000: VTAB 18: PRINT "Regenerating function";
8001 REM Modified FFT routine by Oppenheim and Schaffer
8002 LT = LOG (T) / LOG (2): DIM P2(10):P2(0) = 1: FOR I
TO 10:P2(I) = 2 * P2(I - 1): NEXT I:PI = 3.1415926535

8003 FOR L =1 TO LT:LE = P2(LT + 1 - L):L1 = LE / 2:UA = 1:UB
=0

8004 WA = COS (PI / L1):WB = SIN (PI / 1Ll1): FORJ = 1 TO L1
8005 FOR I = J TO T STEP LE:IP = I + Ll

8006 TA = A(I) + A(IP):TB = B(I) + B(IP)

8007 VA = A(I) - A(IP):VB = B(I) - B(IP)

8008 A(IP) = VA * UA - VB * UB:B(IP) = VA * UB + VB * UA

8009 A(I) = TA:B(I) = TB: NEXT I

]
=

8010 VA = UA:VB = UB

8011 UA = VA *# WA - VB * WB

8012 UB = VA * WB + VB * WA: NEXT J,L
8018 J =1

8019 FORI =1TO T -1

8020 IF I > = J THEN 8024
8021 TA = A(J):TB = B(J)
8022 A(J) = A(I):B(J) = B(I)

8023 A(I) = TA:B(I) = TB

8024 K=T / 2

8025 IF K > = J THEN 8028

8026 J = J - K

8027 K = K / 2: GOTO 8025

8028 J = J + K: NEXT I

8029 FOR I = 1 TO T:A(I) = A(I):B(I) = B(I): NEXT
8050 HGR : HCOLOR= 3: GOSUB 10000

8060 N = 1: FOR I = 0 TO 255 STEP (256 / T)

8070 HPLOT I,128 TO I,128 - SQR (A(N) * A(N) + B(N) * B(N)) /
2

8080 N = N + 1: NEXT
8085 HOME : VTAB 22: INPUT "Replace data on card? (y/n) ";AS:

IF NOT ((A$ = "y") OR (AS$ = "Y") OR (A$ = "n") OR (A$ = "N"))
THEN 8085
8086 IF (A$ = "Y") OR (AS$ = "y") THEN GOSUB 10000: FOR I = 1

"TO T: POKE 49363,A(I): NEXT
8090 HOME : VTAB 22: INPUT "Superimpose original? (Y/N) ";AS:

IF NOT ((A$ = "y") OR (A$ = "Y") OR (A$ = "n") OR (AS$ = "N"))
THEN 8090
8100 IF (A$ = "n") OR (A$ = "N") THEN RUN

8110 E = T:S = 1024 / T: GOTO 2005
10000 POKE 50432,0: POKE 49360,ST(0): POKE 49361,ST(1): POKE
49362,ST(2): RETURN

/MQP/FILTER

100 HOME : PRINT "Digital kill filter utility:"

110 PRINT : INPUT "Threshold level? (0-255) ";AS

120 A = VAL (A$): IF A = 0 THEN PRINT CHRS (4)"-startup"
125 PRINT "Loading data..."

130 PRINT CHR$ (4)"open /ram/fft.dat"

140 PRINT CHR$ (4)"read /ram/fft.dat"

150 INPUT T: DIM A(T),B(T)

160 INPUT SO,S1,S2

170 FOR I = 1 TO T: INPUT A(I),B(I): NEXT

171 PRINT CHRS (4)"close"

173 PRINT "Filtering..."

175 FOR I =1 TO 7T

180 IF A > ABS (A(I)) THEN A(I)
190 IF A > ABS (B(I)) THEN B(I)
200 NEXT I

210 PRINT "Storing data..."

220 PRINT CHRS$ (4)"open /ram/fft.dat"

230 PRINT CHRS (4)"write /ram/fft.dat"

240 PRINT T: PRINT SO0: PRINT S1: PRINT S2

250 FOR I = 1 TO T: PRINT A(I): PRINT B(I): NEXT
260 PRINT CHRS$ (4)"close"

270 PRINT CHRS$ (4)"-startup"

o
o

